

NPS-CS-10-002

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

 Specification and Validation of Space System
Behaviors

 By Doron Drusinsky and Steven Raque

 02 February 2010

 Approved for public release; distribution is unlimited

 Prepared for: NASA IV&V Facility
 100 University Drive
 Fairmont, WV 26554

NAVAL POSTGRADUATE SCHOOL
Monterey, California 93943-5000

Daniel T. Oliver Leonard A. Ferrari
President Executive Vice President and
Provost

This report was prepared for the NASA IV&V Facility and funded by the NASA IV&V
Facility.

Reproduction of all or part of this report is authorized.

This report was prepared by:

Doron Drusinsky
Associate Professor of Computer Science
Naval Postgraduate School

Reviewed by: Released by:

________________________ _______________________
Peter J. Denning, Chairman Karl A. van Bibber
Department of Computer Science Vice President and
 Dean of Research

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis
Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a
collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)
02-02-2010

2. REPORT TYPE
 Technical Report

3. DATES COVERED (From - To)
Jan. 2009 – Dec. 2009

4. TITLE AND SUBTITLE
Specification and Validation of Space System Behaviors

5a. CONTRACT NUMBER
NNG07LD021

5b. GRANT NUMBER

 5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Doron Drusinsky

5d. PROJECT NUMBER

Steven Raque 5e. TASK NUMBER

 5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School

8. PERFORMING ORGANIZATION REPORT
NUMBER

Monterey, CA 93943-5000

NPS-CS-10-002

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
NASA IV&V Facility
100 University Dr.

Fairmont, WV 26554
 11. SPONSOR/MONITOR’S REPORT
 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The NASA Independent Verification and Validation (IV&V) Facility is using formal specification techniques for the IV&V of the flight software
for several upcoming missions. Such formal specifications are typically created on the basis of natural-language (NL) requirement specifications
that are formalized at a later stage. This paper describes a technique for the discovery of NL requirements by systematic analysis of UML
Activity Diagrams and Sequence Diagrams that represent critical mission operational scenarios and sequences. Our technique demonstrates a
pattern oriented approach where patterns of NL requirements are mined out of the UML models based on predetermined categories of assertions,
including Bounded Eventualities, Loops, Reentrance, and Order and Precedence.

15. SUBJECT TERMS
Validation and verification, formal methods, specification, UML, scenarios, requirements, patterns
16. SECURITY CLASSIFICATION OF:

17. LIMITATION
OF ABSTRACT

18.
NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
Doron Drusinsky

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

SAR 32

19b. TELEPHONE NUMBER (include area
code)

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

1. Introduction
Formal requirement specifications are mathematically rigorous specifications that are

readable and executable by a computer based verification system. Many formal
specification languages have been described over the past two decades, including linear-
time temporal logic (LTL) [LTL], branching-time temporal logics [CTL], and more
recently, statechart assertions [Dr1]. For most NASA applications, the ultimate purpose
of formal specifications is to be applied towards subsequent computer-aided verification,
using techniques such a model-checking, theorem proving, and run-time verification;
[DMS] provides a three dimensional comparison of these three primary verification
techniques.

Harel statecharts [Ha], currently part of the UML standard, are typically used for
design analysis and implementation. In his 2006 book [Dr1], the author describes the
application of deterministic and non-deterministic statecharts-assertions to formal
requirement specification and run-time verification. This approach is currently in active
use by the NASA IV&V facility.

Runtime Verification (RV) is a class of methods for tracking the temporal behavior of
an underlying application and comparing it against its formal specification. RV methods
range from off-line logging methods to on-line tracking of complete formal
requirements. NASA is currently using an log file based monitoring approach to verify
statechart assertion specifications for GPM and the Crew Vehicle component of the Orion
mission.

Effective use of RV-based verification depends on the construction of sound and
complete correctness property assertions. Validation is the process of assuring the
correctness of formal specification assertions with respect to their informal intent as
manifested by natural language specifications. In [DKS], Drusinsky, Kadir, and Shing
describe the validation process used to create sound LTL/MTL correctness properties. In
[DOS] Drusinsky, Otani, and Shing describe a set of validation scenario templates, or
patterns, that are common to most statechart assertion validation test suites.

This paper describes a process for extracting natural language specifications from
informal UML diagrams [UML]. Hence, it addresses one of the most difficult concerns
for many formal specification and verification techniques that depend on the existence of
good natural language specifications. In fact, this also addresses a concern of old
fashioned human based testers as well; after-all, human testers need meaningful, accurate,
and detailed natural specifications in order to write good tests.

To this end, this paper describes a systematic process for obtaining NL requirements from
a UML based System Reference Model (SRM). The paper describes a case study
conducted at the NASA IV&V facility in which we created: (i) created SRM’s for the
Gravity Recovery and Interior Laboratory (GRAIL) mission and the Global Precipitation
Measurement (GPM) mission, (ii) extracted natural language requirements from each
SRM, (iii) created statechart assertion formal specifications for those requirements, and
(iv) performed validation to assure that our formal specifications correctly represent the
spirit behind the natural language specifications.

 3

This paper is organized as follows. Section 2 describes the GRAIL and GPM missions
while sections 3 through 5 describe our results using GRAIL as an example: section 3
describes the SRM creation process, section 4 describes the process of extracting NL
requirements from the SRM, and section 5 describes four categories of requirements that
can often be extracted from an SRM.

We used the StateRover Eclipse plug-in to create statechart assertions [Ec, Sr] and JUnit
[Ju] (the de-facto standard framework for Java testing) as a framework for validation.

2. GRAIL and GPM Missions
GRAIL’s mission is to reveal the moon’s internal structure and evolution by flying twin
spacecraft orbiters in tandem orbits around the moon for several months to measure its
gravity field in unprecedented detail [GRAIL]. The orbiters will constantly adjust attitude
to face each other, while the distance between the orbiters is expected to fluctuate in
response to changes in lunar gravitation field.

The GPM mission will study global precipitation (rain, snow, and ice) from low earth
orbit [GPM]. Carrying a dual frequency radar instrument and a passive microwave
radiometer, the GPM spacecraft will serve as a calibration standard, and each instrument
requires precise pointing for target location determination.

GRAIL and GPM, as well as many other scientific missions can be thought of as two
separate missions: the flight mission and the scientific mission. The flight-mission is the
mission we use in this paper. GRAIL’s main high-level use-case scenario is to send the
pair of orbiters into pre-prescribed lunar orbits; the orbiters will constantly adjust attitude
so to face each other, while the distance between the orbiters is expected to fluctuate in
response to changes in lunar gravitation field. The orbiters will measure the fluctuating
distance as part of the scientific mission

3. GRAIL SRM: The Process
As stated above, the SRM is a way of capturing the system functional architecture
required to achieve the mission goals. At the highest level of abstraction, a use case
diagram is used to show all the goals and the functions necessary to achieve the goals.
Fig. 1a is part of a top-level use case diagram representing functional goals for the
GRAIL mission. As is common with use case driven modeling, Fig. 1a does not reflect
the only effective way to parse the system goals and functionality. Rather, the figure is
intended to give a sense of the overall approach.

From this level, the SRM is elaborated with textual use cases that include preconditions,
postconditions, a trigger, a main success scenario, and extension scenarios. Each of these
use cases are represented as AD’s (as depicted in Fig. 1b), and critical actions (use case
steps) are further elaborated with more AD’s and SD’s. In this approach, the UML
diagrams take the place of the Functional Flow Block Diagrams (FFBDs). One key
advantage over FFBDs is that UML (and alternatively SysML) provide more diverse
constructs that can represent diverse perspectives on required system behavior and
functionality. Because of their similarity to flowcharts, it has been found that AD’s are a
broadly understandable way of capturing mission scenarios.

 4

Insert Orbiter into Lunar Orbit

«Common»
Change Velocity Using Main Engine

Perform Lunar Orbit Insertion Burn

Achieve Lunar Orbit

Adjust Trajectory

Establish Science Formation

Reduce Orbital Period

«include»«include»

«include»«include»

«include»«include»

«include»«include»

«include»«include»

«include»«include»

a. Top level use case diagram depicting two of eight high-level goals/functions for the
GRAIL mission.

 5

«Main Success Scenario»
AchieveLunarOrbit

Mission System

Verify FS is on intended initial trajectory

Adjust Trajectory of GRAIL A and
GRAIL B to separate Lunar arrival

by one day (TCM-A2, TCM-B2)

Adjust Trajectory of GRAIL A and
GRAIL B to enter invariant manifold

(TCM-A3, TCM-B3)

Verify FS on target for polar lunar orbit insertion

Insert GRAIL A into Lunar Orbit

Insert GRAIL B into Lunar Orbit

«Extension Scenarios»
AchieveLunarOrbitExtensions

Mission System

Adjust Trajectory of GRAIL A
and/or GRAIL B to correct
injection errors (TCM-A1,

TCM-B1)

Recalibrate main engine and/or IMU

Adjust Trajectory of GRAIL A
and/or GRAIL B to separate Lunar

arrival by one day

Recalibrate main engine and/or IMU

Adjust Trajectory of GRAIL A and/or
GRAIL B to achieve low energy
trajectory (TCM-A4, TCM-B4)

Adjust Trajectory of GRAIL A and/or
GRAIL B to target polar orbit insertion

point (TCM-A5, TCM-B5)

Begin planning of orbit
corrective maneuver(s)

Begin planning of orbit
corrective maneuver(s)

[Not on intended trajectory][Not on intended trajectory]

[On intended trajectory][On intended trajectory]

[Not separated by one day][Not separated by one day]

[Separated by one day][Separated by one day]

[Not on low energy trajectory][Not on low energy trajectory]

[On low energy trjectory][On low energy trjectory]

[Not on target][Not on target]

[On target][On target]

[Recoverable Lunar orbit][Recoverable Lunar orbit]

[Not in Lunar orbit or recoverable orbit][Not in Lunar orbit or recoverable orbit]

[Correct Lunar orbit][Correct Lunar orbit]

[Not in Lunar orbit or recoverable orbit][Not in Lunar orbit or recoverable orbit]

[Correct Lunar orbit][Correct Lunar orbit]

b. AchieveLunarOrbit activity diagram representing the mission scenario that starts with
both orbiters being separated from the launch vehicle and being on an initial trajectory

departing earth orbit, and concluding with both orbiters in lunar orbit.

Figure 1. High level SRM view of the GRAIL flight mission

 6

4. GRAIL: From SRM to NL Requirements
The GRAIL SRM consists of use-case diagrams, use-cases, activity diagrams (AD’s),
sequence diagrams (SD’s), and finite state machines (FSM). These artifacts are informal
and as discussed below are not usable out of the box for subsequent verification. Stated
differently, the SRM artifacts are almost recommendations, and are therefore not
definitive “shall or “shall not” requirements; this point will be demonstrated using some
of the examples the follow. Hence enters the next important step in our process namely,
formal specification requirement and assertion extraction. Our strategy is to first identify
items of concern, or concerns for short, by observing the GRAIL SRM diagrams in a
certain critical manner. It is important to note here that a concern is not about the quality
of a GRAIL AD, SD, or FSM as such; rather, it is a concern or constraint about the
GRAIL flight code behavior as prescribed by the AD, SD, or FSM that a reasonable
tester should address in his/her test harness. Stated differently, it is because we have well
written and informative, albeit informal, SRM diagrams that it is possible to identify test
related concerns from them. In a later step, we will create computer-based assertions,
they too being testers of sorts, to address those concerns during verification.

4.1 The Assertion Development Process
We will create concern related assertion in a two step process. The first step is to identify
a concern in an AD, SD, or FSM and capture it as a NL requirement. The second step is
to formalize a corresponding statechart-assertion (for a reactive requirement) or
propositional-assertion (for a transformational requirement) and to validate it using the
process described earlier.

To simplify the first step, we have identified four categories of concerns, numbered C1
through C4 For each category we will present one or more examples that consist of the
UML diagram, a narrative description of concerns, the resulting NL requirements, and
their corresponding assertions and validation tests.

5. Categories of Concerns

5.1. C1: Bounded Eventualities
The AD of Fig. 2a captures GRAILs flight behavior as of the separation of the two
orbiters from the primary launch vehicle, and until they are inserted into their respective
lunar orbits. The AD of Fig. 2b details the Perform Lunar Orbit Insertion Burn
(PerformLOIBurn) activity of Fig. 2a, an activity performed by each orbiter, intended to
insert the orbiter in a lunar orbit prescribed by MS. The SD of Fig. 2c depicts the same
scenario1.

The insertion of an orbiter into the correct lunar orbit is performed by turning on the
Propulsion Fuel Valve at the right time for a specified duration in a reverse boost mode,
i.e., in a direction opposite to the acceleration vector. Mission Systems (MS) control
determines and uploads those parameters in a command sequence. The orbiter is meant to

1 One could argue that the SD view is preferable for our purpose because SD messages are easier to affiliate
with method names used in assertions and in the executable-SRM section below.

 7

be autonomous during this boost phase; this is because the boost operation is time
sensitive, i.e., no external entity should be allowed to interfere in the operation, not even
MS or fault protection. This is indicated by the AD of Fig. 2a, where fault protection is
turned off before the slew and burn activities and turned back on afterwards. A concern
here is therefore that the orbiter performs boost according to parameters prescribed by
MS the command sequence, up to some level of acceptable tolerance. Hence, the NL-
requirement is R1: once LOI burn sequence is uploaded, the orbiter will, within the time
prescribed in the command sequence parameters (plus/minus Δt1), perform a burn for the
duration prescribed in the command sequence parameters (plus/minus Δt2).

Clearly, the key concern of R1 is with tasks performed within a prescribed time, i.e., with
bounded eventualities.

Fig. 3 depicts the statechart-assertion for requirement R1.

 8

«Main Success Scenario»
InsertOrbiterIntoLunarOrbit

«precondition» 1. Orbiter is on the correct low-energy trajectory to the polar lunar orbit in...

Orbiter

Slew to Burn Attitude

Disable Autonomous Fault
Protection Responses

Enable Fault Protection
Settings

Slew to Sun Biased
Attitude

Perform Lunar orbit
insertion burn

Mission System

Command LOI
Sequence to begin

Verify Orbiter in
correct orbit

«Extension Scenarios»
Insert Spacecraft Into Lunar Orbit Extensions

Orbiter

Execute corrective maneuvers

Mission System

Command LOI sequence
to begin

Determine necessary
corrective maneuvers

Uplink sequence(s) for
corrective maneuvers

Command re-enabling fault
protection

[LOI sequance starts][LOI sequance starts] [LOI sequence does NOT start][LOI sequence does NOT start]

[Fault Protection disabled
OR enabled]
[Fault Protection disabled
OR enabled]

[Required attitude achieved
OR not achieved]
[Required attitude achieved
OR not achieved]

[Fault protection disabled][Fault protection disabled]

[Fault protection enabled][Fault protection enabled]

[Incorrect but recoverable orbit][Incorrect but recoverable orbit]

[Correct Orbit][Correct Orbit]

[NOT in Lunar orbit OR NOT in recoverable orbit][NOT in Lunar orbit OR NOT in recoverable orbit]

a. InsertOrbiterIntoLunarOrbit activity diagram

 9

Perform Lunar Orbit Insertion Burn

C&DH

LOI burn start time

LOI burn max time

endOfLOIBurn

GuidanceNavigationAndControl

Perform constant-rate +Z
pitch maneuver

Measure and
compare target and

actual Delta V

endOfLOIBurn

enterInertialHoldMode

Propulsion

Turn on Catalyst-bed heaters

Open fuel valve

Close fuel valve

Turn off Catalyst-bed heaters

«Assertion»
Once LOI sequence begins
execution, the orbiter will open
the fuel valve, begin the
constant-rate +Z pitch
maneuver, and begin measuring
actual delta V within +- TBD
milliseconds of the prescribed
time.

«Assertion»
Once fuel valve is opened, the
orbiter will close the fuel valve
and stop the constant-rate +Z
pitch maneuver within TBD
milliseconds of the Target Delta
V equalling or exceeding the
actual Delta V.

[Actual Delta V >= Target Delta V][Actual Delta V >= Target Delta V]

[Actual Delta V< Target Delta V][Actual Delta V< Target Delta V]

b. PerformLOIBurn activity diagram.

 10

c. PerformLOIBurn sequence diagram.

sd PerformLOIBurn

GuidanceNavigationAndControlPropulsionC&DH

Wait for LOI start time

Wait for LOI burn maximum time

par

par

1.1: startCatalystBedHeaters1.1: startCatalystBedHeaters

1.7: stopCatalystBedHeaters1.7: stopCatalystBedHeaters

1.6.1: enterInertialHoldMode1.6.1: enterInertialHoldMode

1.6: endLOIBurn1.6: endLOIBurn

1.3: collectPropulsionEventData1.3: collectPropulsionEventData

1.2: openFuelValve1.2: openFuelValve

1.5: closeFuelValve1.5: closeFuelValve

1.4: enterLOIDeltaVMode1.4: enterLOIDeltaVMode

1.4.3: closeFuelValve1.4.3: closeFuelValve

1.4.1: constant+ZPitchRate1.4.1: constant+ZPitchRate

1.4.2: measureAndCompareDeltaV1.4.2: measureAndCompareDeltaV

1.4.5: endLOIBurn1.4.5: endLOIBurn

1.4.4: endLOIBurn1.4.4: endLOIBurn

1.4.4.1: enterInertialHoldMode1.4.4.1: enterInertialHoldMode

1: continueLOISequence1: continueLOISequence

Figure 2.

 11

Listing 1 includes two validation tests for this assertion. Note that the tests create their
own mockup accessory BurnSequence data objects.

Figure 3. statechart-assertion for NL requirement R1.

 public void testMe() {
 int nTime= 0;
 BurnSequence seq = new BurnSequence(1000, 100);
 assertion.burnSequenceUploaded(seq);
 nTime = 1009;
 CDH.setTime(nTime);
 assertion.openedFuelValve();
 nTime += 96;
 CDH.setTime(nTime);
 assertion.closeFuelValve();
 nTime += 100;
 CDH.setTime(nTime);
 assertTrue(assertion.isSuccess());
 }

a. A success validation test scenario.
 public void testMe() {
 int nTime = 0;
 BurnSequence seq = new BurnSequence(1000, 100);
 assertion.burnSequenceUploaded(seq);
 nTime += 1008;
 CDH.setTime(nTime);
 assertion.openedFuelValve();
 nTime += 94;
 CDH.setTime(nTime); // too early
 assertion.closeFuelValve();
 nTime += 100;
 CDH.setTime(nTime);
 assertFalse(assertion.isSuccess());
 }

 12

b. A failure validation test scenario.

Listing 1. Validation tests for the statechart-assertion of Fig. 3.

Note that the Bounded Eventualities category is actually a subset of the Order and
Precedence category; hence, Fig. 2a and Fig. 2b will be analyzed again in that section.

5.2. C2: Loops
This category analyzes possible system behavior issues related to loops found in AD’s,
SD’s, or FSM’s.

The AttitudeControl FSM of Fig. 4 depicts the three primary modes of attitude control:

1. Slew, where reaction wheels are used to adjust attitude, if associated forces are
sufficiently small.

2. LOIDeltaV - Lunar Orbit Insertion Delta-V, where .

3. InertialHold, The no-operation or idle mode.

GuidanceNavigationAndControl

LOIDeltaV

PitchOrbiter
do/ConstantRate+ZPitch

DeltaVTrigger
do/MeasureAndCompareDeltaV

InertialHold
do/HoldInertialAttitude

SlewAbsolute
do/SlewOrbiterAbsolute

endLOIBurnendLOIBurn

enterLOIDeltaVModeenterLOIDeltaVMode

enterSlewModeenterSlewMode
enterInertialHoldModeenterInertialHoldMode

Figure 4. FSM for Attitude Control modes.

Clearly, this FSM implies the following requirement; R2: The system cannot change
modes from Slew to LOIDeltaV or visa-versa without being in the InertialHold mode for
at least T seconds. A statechart assertion for this requirement is depicted in Fig. 5. Listing
2 contains a validation test for this assertion.

 13

Figure 5. Statechart-assertion for requirement R2.

 public void testMe() {
 assertion.enterLOIDeltaVMode();
 assertion.incrTime(20);
 assertion.enterInertialHoldMode();
 assertTrue(assertion.isSuccess());
 assertion.incrTime(35);
 assertion.enterSlewMode();
 assertion.incrTime(10);
 assertTrue(assertion.isSuccess());
 assertion.enterInertialHoldMode();
 assertion.incrTime(10);
 assertion.enterSlewMode();
 assertFalse(assertion.isSuccess());
 }

Listing 2. A validation test for the statechart-assertion of Fig. 5 .

Note that although R2 is not a looping requirement per-se, it helped uncover the
following looping concern: should there be a limit on the number of times or the
frequency in which mode can change between Slew and LOIDeltaV, or visa-versa? The
authors sulution yielded the following requirement. R3 : The system can toggle between
Slew and LOIDeltaV modes at most twice per minute. A (non-deterministic) statechart
assertion for this requirement is depicted in Fig.6. Listing 3 contains a validation test for
this assertion.

 14

Figure 6. A (non-deterministic) statechart-assertion for requirement R3 .

 public void testMe() {
 assertion.enterSlewMode();
 assertion.incrTime(20);
 assertion.enterLOIDeltaVMode();
 assertion.incrTime(50);
 assertion.enterSlewMode();
 assertTrue(assertion.isSuccess());
 assertion.incrTime(4);
 assertion.enterLOIDeltaVMode();
 assertFalse(assertion.isSuccess());
 }

Listing 3. A validation test for the statechart-assertion of Fig. 6 .

Consider the Slew Orbiter Absolute AD of Fig. 8, a refinement of the Slew to Burn
activity within the Adjust Trajectory AD of Fig. 7. The Slew Orbiter Absolute activity
performs a slew to an absolute attitude. After selecting reaction wheels as the actuator
that physically induces the slew, it simultaneously predicts and determines attitude. If
either of those activities has an error then the extension side of the AD shows that the
Kalman filter2 is reset and the loop is then closed with the two activities being executed
again. A looping concern here is: how many times and how often this loop can be

2 The Kalman filter is an efficient recursive filter that estimates the state of a linear dynamic system from a
series of noisy measurements. See http://en.wikipedia.org/wiki/Kalman_filter

 15

http://en.wikipedia.org/wiki/Rudolf_E._Kalman
http://en.wikipedia.org/wiki/Recursive_filter
http://en.wikipedia.org/wiki/Estimator
http://en.wikipedia.org/wiki/Linear_system
http://en.wikipedia.org/wiki/Noise

traversed? With the SME’s feedback we forged the following requirement R4: whenever
the Kalman Filter is reset more than N times in a 5 minute interval then Safe mode
should be entered within 30 seconds afterwards .

Figure 7. The AdjustTrajectory activity diagram

 16

Figure 8. Slew Orbiter Absolute activity diagram, a refinement of the Slew to Burn

activity of Fig. 4.7.

A (non-deterministic) statechart-assertion for this requirement is depicted in Fig. 9.
Listing 4 is a corresponding validation test.

Another looping concern associated with the AD of Fig. 8 is related to entering and
ending Safe Mode, as follows. It is fault protection that forces the orbiter into safe mode,
and it is a human in the loop in MS that has the authority and ability to bring the orbiter
out of that mode. The concern is therefore whether there should be a limit on the number
and frequency of such switches in and out of safe mode. Indeed, a similar a problem had
occurred in the past. Since requirement R3 (and its associated statechart-assertion of Fig.
6) is similar in nature to this requirement we will not discuss it further.

 17

Figure 9. A (non-deterministic) statechart-assertion for requirement R4.

 public void testMe() {
 // Adapting the validation test of Listing 3.7:

// T/30 is the ratio between the time constraint in
// Listing 3.7 and here

 int nFACTOR = 10*60/30;

 assertion.kalmanFilterReset();
 assertion.incrTime(6*nFACTOR);
 assertion.kalmanFilterReset();
 assertion.incrTime(5*nFACTOR);
 assertion.kalmanFilterReset(); // <=- start of violating

 // sequence
 assertion.incrTime(20*nFACTOR);
 assertion.kalmanFilterReset(); // 4'th as of time 0 happens

 // at time 31*nFACTOR --> ok
 assertion.incrTime(6*nFACTOR);
 assertion.kalmanFilterReset(); // 4'th as of time 6 after
 //addition 31*nFACTOR --> ok
 assertTrue(assertion.isSuccess());
 assertion.incrTime(1*nFACTOR);
 assertion.kalmanFilterReset(); // 4’th E as of time
 //11*nFACTOR happens after
 // additional 27 time units
 assertion.incrTime(31);
 assertion.enterSafeMode(); // too late
 assertFalse(assertion.isSuccess());
 }

 18

Listing 4. A validation test for the statechart-assertion of Fig. 9.

5.3. C3: Reentrance
This category encapsulates various concerns about the system performing a scenario that
effectively reenters an activity as specified by some UML AD, SD, or FSM diagram,
before it has completed its current invocation.

When the authors first analyzed reentrance issues for the PerformLOIBurn activity of
Fig. 2b, we immediately realized that re-entrance was prohibited. In fact, although a
orbiter might have a plurality of command sequences active at the same time, at most one
of those can be a Propulsion Burn sequence. Hence enters requirement R5 : at most one
propulsion burn sequence (per orbiter) can be active at any given time. The statechart-
assertion for this requirement is depicted in Fig. 10 .

Figure 10. A statechart-assertion for requirement R5.

Consider the ConstrantRate+ZPitch AD of Fig. 8 again. As discussed in section C2, the
Determine Attitude and Determine Attitude rates activities are performed concurrently; in
the extension scenario either activity can perform a Reset Kalman Filter activity and then
re-enter the main swim lane and start new Determine Attitude and Determine Attitude
rates activities. This is a case of re-entrance. Several issues are unclear as presented in
this AD:

1. Is the Kalman filter shared between the Determine Attitude and Determine
Attitude Rates activities or does each activity have its own copy.

2. Is it possible for Determine Attitude to have an error but not Determine Attitude
Rates, or visa-versa? If so, suppose for Determine Attitude has an error but not
Determine Attitude Rates. In the extension scenario a Reset Kalman Filter activity
is performed and then both Determine Attitude and Determine Attitude Rates are

 19

initiated. Does this mean there are two copies of Determine Attitude Rates
executing? That is probably not the case, so should the currently executing
Determine Attitude Rates activity be restarted? What if that activity has already
finished its task? Alternatively, what if this activity is left untouched but the
Kalman filter is reset while its mid-way in its operation? After-all, it might have
used old (possibly stale) Kalman filter states in part of its calculation and zero
states elsewhere.

5.4. C4: Order and Precedence
This category is about making commitments to the order of activities prescribed in AD’s,
SD’s, and FSM’s. Consider the Insert Orbiter into Lunar Orbit AD of Fig. 2a. Note the
sequence of three activities: Disable Autonomous Fault Protection, Slew to Burn Attitude,
and Perform Lunar Orbit Insertion Burn, denoted as DAFP, SBA, and PLOIB,
respectively. A concern here is whether this order is required, suggested, or just merely
allowed; for example, is SBA allowed to happen without a following PLOIB? An
additional concern is whether any such rule applies to the entire system or only to this
part of the mission, in light of the fact that SBA and PLOIB appear in other AD’s, such as
in Adjust Trajectory AD of Fig. 7. A reasonable question is therefore, do DAFP, SBA,
and PLOIB always have to always appear in that order (as prescribed in Fig. 2a)? If not,
how about a subsequence, such as SBA followed by PLOIB? The answer to those
questions, as provided by Subject Matter Experts (SME’s), is the following.

1. PLOIB is a special kind of a burn activity, one performed specially for the
purpose of inserting the orbiter into lunar orbit. With this and any other burn
activity, engines perform a burn to achieve a certain kinetic or attitude maneuver ;
a slew (SBA) - an adjustment of attitude, is planned to precede a burn of any kind.
However, it is possible in most cases, that fault protection preempt the burn
activity. In fact, such a possibility of preemption is indicated in the Adjust
Trajectory AD of Fig. 7, where Loss of Attitude Knowledge or Loss of Attitude
Control trigger an extension fault-protection scenario whereby the orbiter enters
Safe Mode. Hence follows requirement R6: during the execution of an “Insert
Orbiter into Lunar Orbit command”, fault protection must be off during the slew
and burn operations.

Fig. 11 depicts a statechart-assertion for the composite of requirements R6 and
R7.

 20

Another example from this category is a concern about the PerformLOIBurn AD of Fig.
2b. Here, not only that the order listed in the AD is a must, but there are additional
constraints as listed in the following NL requirement.

Figure 11. A statechart-assertion the composite of requirements R6 and R7.

R8: Once C&DH decides to perform Lunar Orbit Insertion Burn (PerformLOIBurn) the
propulsion system must execute the sequence of four activities listed in Fig. 2b precisely
in that order, with the following constraints:

a. There must be at least T_PUMP_OPEN_LB seconds warm-up delay between
“Turn on Catalyst-bed heaters” and “Open fuel valve”.

b. There is an upper bound of T_PUMP_CLOSE seconds between “Close fuel
valve” and “Turn off Catalyst-bed heaters”.

c. “Perform constant rate pitch maneuver” must be active while the fuel valve is
open (with 500 millisecond accuracy tolerance).

Fig. 12 depicts a statechart assertion for items a and b of requirement R8; it also includes
additional common sense bounds, such as an upper bound on amount of time the pump
can be open. Note the event labeled eventTRdefault; as discussed in my previous book it
is a built-in event whose behavior resembles that of “else”, i.e., it fires if none of the
other transitions that induce a state change fire. This helps us specify formally that the
only acceptable sequence in the AD of Fig. 2b is precisely the one specified in the
diagram (the scenario captured by the JUnit test of Listing 5.a), and no other variant be it
a sub-sequence or super-sequence, is allowed; hence for example, the assertion prohibits
the super-sequence of Listing 5b, in which an openFuelValve event happens twice, once
before turnOnCatalystBedHeaters and once afterwards.
 public void testMe1() {

LOIBurnSequence seq = new LOIBurnSequence(1000, 100);
 assertion.startExecutingCommand(seq);
 assertion.incrTime(1);

assertion.turnOnCatalystBedHeaters();

 21

 assertion.incrTime(35); // sufficient warm-up time

 assertion.openFuelValve();
 assertion.incrTime(20*60); // burn for 20 min
 assertion.closeFuelValve();
 assertion.incrTime(1); // sufficiently soon therafter

assertion.turnOffCatalystBedHeaters();
assertTrue(assertion.isSuccess());

 }

a. The precise sequence described in the AD of Fig. 2b (with additional timing delays)
public void testMe2() {

LOIBurnSequence seq = new LOIBurnSequence(1000, 100);
 assertion.startExecutingCommand(seq);
 assertion.incrTime(1);
 assertion.openFuelValve(); // a “redundant” event not

 // formally prohibited by
 // the AD of Fig. 2b.

assertion.incrTime(1);
assertion.turnOnCatalystBedHeaters();

 assertion.incrTime(35); // sufficient warm-up time

 assertion.openFuelValve();
 assertion.incrTime(20*60); // burn for 20 min
 assertion.closeFuelValve();
 assertion.incrTime(1); // sufficiently soon therafter

assertion.turnOffCatalystBedHeaters();
assertFalse(assertion.isSuccess());

 }

b. A variant sequence not specifically forbidden by in the AD of Fig. 2b (with additional
timing delays)

Listing 5. Validation sequences for the requirement R8.

Fig. 13 depicts a nested statechart assertion for item c of requirement R8, using the sub-
statechart notation described in [Dr1]. The top-level statechart assertion (Fig. 13a)
references the same checkConcurrentTiming sub-statechart of Fig. 13b twice.

 22

Fig. 12. A statechart assertion for items a and b of requirement R8.

 23

Fig. 13. A statechart assertion for item c of requirement R8.

Event mapping:
• Event openFuelValve is mapped to sub-statchart event p
• Event startConstantPitchManeuver is mapped to sub-statchart event q

Event mapping:
• Event closeFuelValve is mapped to sub-statchart event p
• Event stopConstantPitchManeuver is mapped to sub-statchart event q

a. Top level statechart assertion. The sub-statecharts represent a nested assertion of
Fig 12.b.

b. The sub-statchart for Fig. 13a.

 24

THIS PAGE INTENTIONALLY LEFT BLANK

 25

6. References
[CTL] E. M. Clarke and E. A. Emerson, “Design and Synthesis of Synchronization

Skeletons Using Branching Time Temporal Logic,” Proc. Workshop on Logic of
Programs, D. Kozen, ed., LNCS 131, Springer-Verlag, 1981, pp. 52-71.

[Dr1] D. Drusinsky, Modeling and Verification Using UML Statecharts, Elsevier
Publishing, 2006.

[DMS] Drusinsky, D. Michael, J. B., and Shing, M. T., A Visual Tradeoff Space for
Formal Verification and Validation Techniques, IEEE Systems Journal, Vol. 2,
No. 4, Dec 2008, pp. 513-519. ISSN: 1932-8184.

[LTL] D. Harel, A. Pnueli, H. Kugler, Y. Lu, and Y. Bontemps, “Temporal Logic for
Scenario-Based Specifications”, in N. Halbwachs and L. D. Zuck, editors,
TACAS, vol. 3440 of LNCS, Springer, 2005, 445–460.

[Ha] D. Harel, “Statecharts: A Visual Formalism for Complex Systems”, Science of
Computer Programming 8, 1987, 231-274.

[Ec] http://www.eclipse.org
[Ju] http://www.junit.org/
[GRAIL] http://nasascience.nasa.gov/missions/grail
[GPM] http://gpm.gsfc.nasa.gov/
[Sr] http://www.time-rover.com

 26

http://www.eclipse.org/
http://gpm.gsfc.nasa.gov/

THIS PAGE INTENTIONALLY LEFT BLANK

 27

 28

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center

Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Research and Sponsored Programs Office, Code 41
Naval Postgraduate School
Monterey, California

4. Steven Raque
NASA IV&V Facility

 100 University Dr.
Fairmont, West Virginia

5. Doron Drusinsky
Naval Postgraduate School
Department of Computer Science
Monterey, California

	1. Introduction
	2. GRAIL and GPM Missions
	3. GRAIL SRM: The Process
	4. GRAIL: From SRM to NL Requirements
	4.1 The Assertion Development Process

	5. Categories of Concerns
	5.1. C1: Bounded Eventualities
	5.2. C2: Loops
	5.3. C3: Reentrance
	5.4. C4: Order and Precedence

	6. References
	INITIAL DISTRIBUTION LIST

